UNDERTRIAGE and OVERTRIAGE

Alison Wilson, MD, FACS
Professor
Skewes’ Family Chair in Trauma
Director, Critical Care and Trauma Institute

WVU Critical Care & Trauma Institute
TRIAGE

- 18th century French: Trier = to separate out
- Minimal use until 1970’s
- Assign degrees of urgency to wounds/illness to decide order of treatment in large group
- Rations treatment efficiently when resources are insufficient to treat all
- Sorting based on need or likely benefit
Over Triage and Under Triage

- Overestimating injuries
 - Goal: 25-30%
 - Discharge w/in 24/48 h
 - No Surgery
 - No ICU
 - No Blood
 - ISS less 15

- Underestimating degree or urgency of injuries
 - Goal: less 5%
 - Needed Resources but didn’t get them
For the TPMs

- Chap 16: “The ORANGE Book”
- Tracking and PI
- Variable Definitions
- Cribari Method
CRIBARI METHOD

<table>
<thead>
<tr>
<th></th>
<th>ISS 1-15</th>
<th>ISS 16-75</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTTA</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>PTTA</td>
<td>D</td>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>No TTA</td>
<td>G</td>
<td>H</td>
<td>I</td>
</tr>
<tr>
<td>TOTAL TRAUMA</td>
<td></td>
<td></td>
<td>J</td>
</tr>
</tbody>
</table>

Undertriage: \((E + H) / (F + I) \times 100\)

Overtriage: \((A/C \times 100)\)
UNIFORM CRITERIA BETTER

• State wide adoption of uniform criteria
 • No change in mortality, but more pts. direct to higher level
 • Brice. PreHospital Emergency Care. 2017
 • WV
 • ↑ activations based on physiology (9.8% vs 14.5%, p<.0001)
 • Activations AFTER ED arrival: ↓ 20% (p<.0039)
 • transported from scene Level 1/2 vs ¾ ↑ (p<.0061)
 Statewide mortality decreased by 6% (p<.03)
SCORING SYSTEMS

- \(\text{GCSm} \leq 5 \) vs \(\text{GCS} \leq 13 \)
 - \(\text{GCSm} \leq 5 \) better assoc. w TC need (Odd ratio: 3.37)
 - Brown JB. J Trauma Acute Care Surg. 2014 Jul; 77:95-102

- \text{MGAP}: \text{Mechanism, GCS, Age, Art. Press}
 - Vs RTS, triage RTS
 - Point value to ranges for each criteria
 - More specific, accurate
 - Low risk (23-29 pts), intermediate (18-22 pts), high <18
 - Mortality 2.8%, 15%, 48%
SHOCK INDEX

- **What Is It?** HR/SBP
- **Bad:** > 1
- Compared to SBP < 90
- More sensitive, less specific for: ISS > 15, emergent operation, ICU >1d, ED death
- ↓ undertriage (5.9%)
- ↑ overtriage (1.3%)

LACTATE

- **ED Lactate vs. SBP (pre-hosp. or ED 90-110)**
 - Better predicting > 6 UpRBC (p<.0001)
 - Better predicting mortality (p<.0001)

- **Lactate ≥ 2.5 vs PH SBP <100**
 - Better predictor of: Bld transfusion > 5U, operation, IR, death
LACTATE

- ↑ Lactate + ACS criteria
 - Improved: PPV, NPV, accuracy
 - Over-triage decreased 7.2%
 - Under-triage increased 0.7%
 - Brown J Trauma Acute Care Surg 2016 81:445-52
KIDS ??

- **Standardized Criteria**

- **Pre-hospital Lactate**
 - For all - Requiring critical care
 - Median 2.1 mmol/L (CC) vs 1.7 mmol/L (p=.01)
 - Subgroup: NI VS + NI GCS
 - Median 2.6 mmol/L (CC) vs 1.7 mmol/L (p=.01)
 - Shah Pediatr Em Care. 2013. 29:715-9
KIDS

- **SIPA (Shock Index, Ped Age-adjusted)**
 - SI > 1.22 (4-6 yo), > 1.0 (7-12yo), >.9 (13-16)
 - SBP <90 (4-6 yo), SBP <100 (7-16 yo)
 - Emergency Operation
 - Need for ETT
 - Need for Transfusion
 - SIPA outperforms (p<.001)
 - Downside – More Math
GERIATRIC

- 65 yo +: 30-45% of Total Trauma admissions
 - Less likely to be transported to Trauma Center
 - Less likely to be transferred to TC
 - Kozar. J Trauma Acute Care Surg. 2015. 78:1197-1209

- More likely to be UNDER TRIAGED : 65+
 - 49.9% vs 17.8%, (p<.001)
GERIATRIC SPECIFIC CRITERIA

• Age alone: 70+ mandates FTTA
 • ↓ ED LOS, mortality
 • Hammer J Trauma Acute Care Surg. 2016.81:162-7

• Age alone: 70+ mandates EMS transport to TC
 • Overall – No ↓ mortality or DC to home
 • ISS less 10: ↓ mortality (2.5% vs 3.0%)
 • Caterino JAGS.2016.64: 1944-1951
GERIATRIC + PHYSIOLOGY

• **SBP 110 vs 90**
 • ↓ Undertriage by 4.4%
 • ↑ Sensitivity for need for intervention
 • Brown J Trauma Acute Care Surg 2015. 78:352-9

• **Shock Index**
 • SI > 1
 • Require Blood Transfusion (p=.0001)
 • Ex Lap (p=.01)
 • Complications (p=.02)
 • Predictor of Mortality (OR 3.1)
 • Pandit J Trauma Acute Care Surg. 2014; 76:1111-5
SECONDARY OVERTRIAGE

- Seen at 1 facility → Transfer to Trauma Center
 - Home from ED, w/in 24 hr
 - No Interventions
- 26% total - almost double if Peds
 - Head/neck injuries (56%)
 - Skin/soft tissue (41%)
 - Sorensen. JAMA. 2013; 148:763-8
- 24% total, Mean ISS 4
 - Ext Fx (31%); Head (23%); Soft tissue (13%)
SECONDARY OVERTRIAGE

- Rural Areas: Factors
 - Need for Consultants: Face, Ortho, Spine
 - Night Shift – hospital resources
 - Con JSR 2015 Mar 462-7
SECONDARY OVERTRIAGE - KIDS

- NTDB age 15 yrs or younger
 - 144,420 transfers evaluated
 - Secondary overtriage if ALL 4 criteria met:
 - ISS less 9, No surgical procedure needed, No CC admission, LOS less 24 hr
 - 22.4 % (32,318 kids) – met definition
 - 37.5% DISCHARGED directly from ED
 - Goldstein J Ped Surg. 2015.50:1028-31
SECONDARY OVERTRIAGE - KIDS

- Reasons:
 - Night shift
 - Scene GCS less 15
 - Need for consultation w Neurosurgeon
 - Followed by Spine, Face
 - Younger much higher rate of transfer (0-2 yrs)
 - Leung Am Surg 2016; 763-7
SUMMARY

- Stick to the Criteria
- Physiologic Additions
 - SHOCK INDEX, Lactate
 - Specific Geriatric
- Kids Overtriage, Old Folks Undertriage
- Secondary Overtriage – opportunity ???

How Breaking Your Hip Increases Your Death Risk
THANK YOU