Give the Right Antibiotics in Trauma

Mitchell J Daley, PharmD, BCPS
Clinical Pharmacy Specialist, Critical Care
Dell Seton Medical Center at the University of Texas and Seton Healthcare Family
Clinical Adjunct Faculty
University of Texas College of Pharmacy
Learning Objectives

• Evaluate specific traumatic injuries where presumptive antibiotics are indicated

• Incorporate guidelines and evidence to make recommendations that balance the risks and benefits of presumptive antibiotics
Disclosure

• No financial conflicts of interest to disclose related to this subject manner

• Discuss off-label uses of medication therapy
Antibiotics in Trauma Patients

Prophylaxis
- Bacterial contamination: No
- Established infection: No

Presumptive
- Bacterial contamination: Yes
- Established infection: No

Treatment
- Bacterial contamination: Yes
- Established infection: Yes

Presumptive Antibiotics in Trauma

Benefits
- Prevent infection / sepsis
- Morbidity
- Mortality

Risks
- Antimicrobial resistance
- Adverse drug reactions
- Superinfection

Specific Traumatic Injuries

- Penetrating abdominal trauma
- Open extremity fractures
- Facial, sinus, skull fractures
- Penetrating brain injury
Penetrating Abdominal Injury (PAI)

- **Infection**
 - Post-op wound infection
 - Intra-abdominal abscess
- **Incidence:** 30-70% → 7-11%
- **Risk factors for infection**
 - Injury mechanism (e.g. velocity)
 - Number of organs
 - Presence of shock
 - Antibiotic spectrum
- **Common pathogens**
 - Gram negative
 - *Escherichia coli*
 - *Enterobacter cloacae*
 - *Klebsiella species*
 - Anaerobes: *Bacteroides*
 - Gram positive
 - *Enterococcus faecalis*
 - *Staphylococcus aureus*

Evidence for Presumptive Antibiotics?

- Has been used since the 1970’s yet no placebo controlled trials

<table>
<thead>
<tr>
<th>Reference and Design</th>
<th>Population</th>
<th>Treatment: % Infections</th>
<th>Pearls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thadepalli 1973</td>
<td>PAI</td>
<td>Cephalothin: 27%</td>
<td>Difference from greater number of anaerobic infections</td>
</tr>
<tr>
<td>RCT single site</td>
<td></td>
<td>Cephalothin + clindamycin: 10%</td>
<td></td>
</tr>
<tr>
<td>Kirton 2000</td>
<td>N=317 PAI HVI</td>
<td>Ampicillin/Sulbactam 3 g q6h 24 hr: 8% 5 days: 10% p=0.74</td>
<td>Antibiotics should NOT be continued >24 hours with HVI (level 1)</td>
</tr>
<tr>
<td>RCT at 4 sites</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HVI: hollow viscous injury

REC: Penetrating Abdominal Trauma

• Preoperative dose with aerobic and anaerobic coverage indicated
 – Cefazolin + metronidazole
 – Clindamycin + gentamicin 5 mg/kg q24h

• Duration:
 – No hollow viscus injury: single pre-operative dose
 – Hollow viscus injury: less than 24 hours

• Clinical pearls:
 – Avoid ampicillin / sulbactam due to poor E. Coli coverage
 – Anaerobe resistance increasing for clindamycin and cefoxitin
Open Extremity Fractures

• Gustilo & Anderson Classification
 – I: open, wound <1 cm, clean
 – II: open, wound >1 cm, no extensive soft tissue injury
 – III: open, >10 cm, extensive STI
• Incidence: 1.8-52%
• Risk factors for infection
 – Grade III injuries
 – Poor vasculature / vascular injury
 – Limited soft tissue coverage (e.g. tibia)

• Common pathogens
 – Gram positive
 • *Streptococcus* species
 • *Staphylococcus aureus*
 – Gram negative (grade III)
 • Enterobacteriaceae
 • *Pseudomonas* species

Evidence for Presumptive Antibiotics?

<table>
<thead>
<tr>
<th>Reference Design</th>
<th>Population</th>
<th>Treatment: % Infections</th>
<th>Pearls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patzakis 2000 RCT single site</td>
<td>N=163 I: 40% II: 33% III: 32%</td>
<td>Grade I & II: cipro 5.8% vs. cef+gent 6% (p=1) Grade III: cipro 31% vs. cef+gent 7.7% (p=0.08)</td>
<td>FLQ may cause delayed fracture healing</td>
</tr>
<tr>
<td>Dunkel 2013 Retrospective</td>
<td>N=1,492 I: 44% II: 25% III: 21%</td>
<td>MV analysis to predict infection 1 day antibiotics: reference 2-3 days: OR 0.6 (0.2-2) 4-5 days: OR 1.2 (0.2-4.9) >5 days: OR 1.4 (0.4-4.4)</td>
<td>1 day may suffice for all grades 70% of grade III infections not covered by empiric regimen</td>
</tr>
</tbody>
</table>

REC: Open Extremity Fractures

• Systemic antibiotics administered as soon as possible after injury
 – All types: target gram positive organisms with cefazolin (clinda if allergy)
 – Type III: additional gram negative coverage indicated with gentamicin q24h

• Duration
 – Type I & II: no more than 24 hours
 – Type III: no more than 24 hours after soft tissue coverage (72 hour max)

• Clinical pearls
 – Fecal contamination (e.g. farm): cover *Clostridium* species with ampicillin/sulbactam
 – Once-daily aminoglycosides not associated with AKI, but warrant caution
Facial, Sinus and Skull Fractures

- Infection
 - Wound infection / sinusitis
 - Meningitis
- Incidence: 10-50%
- Risk factors for infection
 - Mandible fractures (tooth-bearing)
 - Open
 - Proximity to oral/nasal cavity
 - Basilar skull fracture (CSF leak)
- Common pathogens
 - Gram positive
 - Streptococcus
 - *Staphylococcus aureus*
 - Oral anaerobes
 - *Peptostreptococcus*
 - *Propionibacterium*
 - Gram negative
 - *Prevotella*
Evidence for Presumptive Antibiotics?

- Numerous, small conflicting trials with no guidelines

<table>
<thead>
<tr>
<th>Reference Design</th>
<th>Population Fracture location</th>
<th>Treatment duration: % Infections</th>
<th>Pearls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mottini 2014</td>
<td>N=399 Zygomatic: 42% Orbital floor: 33.5% Mandibular: 23%</td>
<td>Amoxicillin / clavulanic >5 after surgery: 3.3% 1 day after: 4% (p=0.77)</td>
<td>Prolonged post-operative antibiotics did not prevent infections</td>
</tr>
<tr>
<td>Domingo 2016</td>
<td>N=359 Mandibular fracture</td>
<td>Post op antibiotics: 14.6% No post op antibiotics: 9.7%</td>
<td>Post-op antibiotics do not provide additional benefit</td>
</tr>
</tbody>
</table>

REC: Facial, Sinus and Skull Fractures

• Preoperative dose with aerobic & anaerobic coverage
 – Cefazolin + metronidazole or ampicillin/sulbactam (clinda if allergy)
 – May forgo for maxilla, zygoma, mandibular condyle region or closed skull

• Duration:
 – Limit to pre-operative doses?
 – < 24 hours post op

• Clinical pearls
 – Little guidance if delayed fixation

Penetrating Brain Injury

- Little data in the civilian population
- Microbiology of potential organisms
 - Skin, hair, bone fragments
 - Trajectory of bullets through sinus cavity's
- Extrapolated from known benefit in clean neurosurgery
 - Ampicillin / sulbactam or ceftriaxone ± metronidazole
 - Duration: pre-operative dose or longer with retained fragments (e.g. 5 days)

Freshwater and Saltwater Injuries

- Assume to be contaminated with aquatic pathogens

<table>
<thead>
<tr>
<th>Source</th>
<th>Unique microbiology (in addition to skin flora)</th>
<th>Clinical Syndrome</th>
<th>Treatment (in addition to)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshwater</td>
<td>Aeromonas hydrophilia</td>
<td>Fever, Leukocytosis, Lymphadenopathy</td>
<td>Doxycycline + Cephalosporin (3rd or 4th generation) Fluoroquinolones</td>
</tr>
<tr>
<td>Saltwater</td>
<td>Vibrio species</td>
<td>Vomiting, Fever, Hypotension</td>
<td>Cephalosporin (3rd or 4th generation) Fluoroquinolones</td>
</tr>
</tbody>
</table>

Antibiotic Resistance

- >2,000,000 infected with antibiotic resistant organisms
- ~23,000 death annually
- Culture of antibiotic overuse
 - 20-50% inpatient inappropriate
 - Consistently associated with development of resistance
- Duration matters!!!

“But Timmy, you have to eat your antibiotics or you’ll never become a big strong bacteria.”
Conclusion

- Presumptive antibiotics indicated for many traumatic infection
- Growing literature that prolonged postoperative durations may not be beneficial
- J Trauma 2016;81:765

<table>
<thead>
<tr>
<th>Injury</th>
<th>Preferred Agent(s)</th>
<th>Alternate Agent(s) (Severe Penicillin and Cephalosporin Allergy)</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penetrating abdominal injury</td>
<td>Cefazolin 1-3 g IV every 8 h + metronidazole 500 mg IV/PO every 8 h</td>
<td>Clindamycin 600-900 mg IV every 8 h</td>
<td>3-5 d</td>
</tr>
<tr>
<td>Open extremity fractures Type I</td>
<td>Cefazolin 1-3 g IV every 8 h</td>
<td>Clindamycin 600-900 mg IV every 8 h</td>
<td>24 h after wound closure</td>
</tr>
<tr>
<td>Type II</td>
<td></td>
<td></td>
<td>24 h after wound closure</td>
</tr>
<tr>
<td>Type III</td>
<td>Cefazolin 1-3 g IV every 8 h + IV/PO every 8 h</td>
<td>Clindamycin 600-900 mg IV every 8 h</td>
<td>24 h after wound closure</td>
</tr>
<tr>
<td>Penetrating head injury</td>
<td>Ampicillin/sulbactum 3-4.5 g IV every 6 h</td>
<td>None</td>
<td>If retained fragment(s) immediately following injury and for 5 d postoperatively</td>
</tr>
<tr>
<td>Facial, sinus, and skull fractures Open</td>
<td>Cefazolin 1-3 g IV every 8 h + metronidazole 100 mg IV/PO every 8 h</td>
<td>None</td>
<td>If no retained fragment(s) at least one dose preoperatively</td>
</tr>
<tr>
<td>Facial, sinus, and skull fractures Closed</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Sinus fractures Open/closed</td>
<td>See recommendations for facial fractures</td>
<td>See recommendations for facial fractures</td>
<td>All sinus fracture types: single preoperative dose</td>
</tr>
<tr>
<td>Skull fractures Open</td>
<td>See recommendations for facial fractures</td>
<td>See recommendations for facial fractures</td>
<td>Single preoperative dose</td>
</tr>
<tr>
<td>Closed</td>
<td>Not routinely recommended</td>
<td>Not routinely recommended</td>
<td>N/A</td>
</tr>
<tr>
<td>Freshwater and saltwater injuries Freshwater</td>
<td>Cefazolin 1 g IV every 6 h</td>
<td>Piperacillin 400 mg IV every 6 h</td>
<td>Based on injury type, source control, and patient condition</td>
</tr>
<tr>
<td>Saltwater/submerged</td>
<td>Cefazolin 1 g IV every 6 h + doxycycline 100 mg IV/PO BID</td>
<td>Cefazolin 400 mg IV every 8 h + doxycycline 100 mg IV/PO BID</td>
<td>Based on injury type, source control, and patient condition</td>
</tr>
<tr>
<td>Human and animal bites</td>
<td>Amoxicillin/clavulanate 875 mg PO BID</td>
<td>Doxycycline 300 mg IV/PO BID</td>
<td>3-5 d</td>
</tr>
</tbody>
</table>
Give the Right Antibiotics in Trauma

Mitchell J Daley, PharmD, BCPS
Clinical Pharmacy Specialist, Critical Care
Dell Seton Medical Center at the University of Texas and Seton Healthcare Family
Clinical Adjunct Faculty
University of Texas College of Pharmacy